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People detection in omnidirectional cameras:

development of a deep learning architecture based

on a spatial grid of classifiers

Abstract

Deep learning has arisen as one of the best tools to use in computer vision. With

the potential of adapting to almost any problem, deep learning CNN (Convolutional

Neural Networks) are highly effective in multiple tasks for computer vision. The

application of deep learning in traditional cameras has improved the performance

in detection tasks with respect to the state-of-the-art methods that don’t use deep

learning. Images from traditional cameras are perspective projections of the real

world with almost no distortion. This allows us to train networks that can learn the

general appearance of an object and assume that they are spatial-invariant between

frames.

However, the use of omnidirectional cameras has increased in the last years

thanks to the advantage they offer with respect of traditional cameras: a wider

Field of View. While in conventional cameras it usually doesn’t go further than 60o,

in omnidirectional cameras it can reach values of 160o. With a single omnidirectional

camera, therefore, we are able to cover a wider area than with a traditional camera,

reducing costs of deployment. But this comes at a cost, and it’s that they introduce

a great distortion, making the objects change their appearance depending on their

position in the image. This makes some of the existing deep learning techniques to

highly reduce their performance, and it’s necessary the use of new techniques.

iii



The proposed method in this thesis uses CNNs to extract characteristics from

omnidirectional images to detect objects using a spatial-aware grid of classifiers.

The original idea, proposed by [1] was to use a HOG features and grid of SVM

classifiers SVM where each of the classifier will learn from a region of the image. In

this way we avoid the problem of using one single classifier that has learnt general

spatial-invariant characteristics. In [1] the goal was to create a robust and real-time

detector using (1) HOG to extract a feature vector from the image and (2) a grid

of SVM (Support Vector Machine) classifiers that would predict the position of the

objects. In our work we propose to substitute this two step architecture with a CNN

that could be used end-to-end.

We have tested Alexnet, Resnet18 and Resnet50. Part of this project has been

the study of data augmentation techniques to improve the performance of the sys-

tem. An example of this is the creation of synthetic images where people are

added from random frames to others. The best performance has been obtained

with Resnet50, with values of F1-Score around XX%.

Keywords: Omnidirectional cameras, deep learning, people detection, convo-

lutional neural networks, CNN, object detection, support vector machines, SVM,

transfer learning, computer vision, grid of classifiers.
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Chapter 1

Introduction

Content

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1 Motivation

Object detection has always been a challenge in the field of computer vision, given

the difficulties it encloses. Object detection algorithms aim to identify the objects

in a scene automatically, without the need of human interaction. These objects

could be anything, from simple objects to animals or people, and this is specially

important in computer vision as it has applications in fields such as video security,

self-driving vehicles [10], sports[11] or robotics. Traditionally, the used cameras to

capture the scene were the ones who introduced less distortion in the images, with

the counterpart of having a reduced FoV (Field of View). This traditional cameras,

1



2 Chapter 1. Introduction

as we will call them for the rest of the work, are easier to build and problems such

as illumination changes and occlusions are well-known, so they were preferred over

other cameras for many years. However, there are other types of cameras that offer

a wider FoV, reaching to 180o against the 60o of traditional cameras, but with the

disadvantage of introducing several distortions in the shape of the objects and being

more complex to build. This wider FoV offers the possibility of reducing the number

of cameras needed to cover a big area, something specially important in surveillance

tasks. The recent interest for this cameras is explained thanks to the development of

faster and computationally efficient algorithms based on deep learning that are able

to cope with the commented introduced distortion in the images and the inherent

problems of traditional cameras. While in traditional cameras the are hundreds of

algorithms based on deep learning for object and people detection, for other types of

cameras the already existing algorithms are not robust enough and their efficiency

when applied to these distorted images is lower. There is still a big space for research

and improvements, and to solve the commented distortion introduced in the image

a different approach to the problem and the use of new techniques are required.

In [1] the proposed idea is to extract a vector of characteristics from the image

and train a grid of foveatic classifiers placed over the image. In this work, it is

explained that the distortion suffered by an object (or in this case an person) in

these images depends on its position in the image. The idea is to train a grid of

classifiers in which each of them will learn to detect people in a region (or fovea) of

the image. In this way, the classifier will learn to identify the characteristics of a

distorted person in that specific region regardless of the distortion in other regions

of the image. However, this work was limited to one point of view, i.e. that each

camera needed to be trained independently.
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1.2 Contribution

In this work, we’ve implemented a modification of the method proposed in [1] and

which was continued in [7]. The goal is to robustly detect people in omnidirectional

cameras making use of deep learning techniques. We will make use of CNNs (Con-

volutional Neural Networks) to detect people in a similar way: we will teach the

network to activate a grid of classifiers in the regions were people appear, locating

each person in the scene.

1.3 Structure

This document is organized in the following way: in Chapter 2 the internship report

contains a description of the work done at the university. In Chapter 3 a review of

the state of the art is done, explaining the previous methods and the first approach to

this new method. A description of the existing types of cameras is also included, with

its advantages and disadvantages. In Chapter 4, the proposed system is explained,

with a description of each part of the process and the found problems and solutions

proposed. Chapter 5 comments the obtained results and describes the tests and

experiments made. Chapter 5.4.6 concludes the work, pointing out the flaws and

advantages of the method and the possible improvements for the future.





Chapter 2

Internship report

Content

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Autonomous University of Madrid . . . . . . . . . . . . . 6

2.1.2 Video Processing and Undestanding lab . . . . . . . . . . 6

2.1.3 Project development and VPU . . . . . . . . . . . . . . . 7

2.1 Introduction

In this Chapter we are going to explain the progress of the intership done in the

Autonomous University of Madrid, and in particular in the VPULab (Video Pro-

cessing and Understanding Lab). We will start talking about the institution, the

general management and then we will explain more about the VPUlab group, the

methodology used and the projects they have.

5



6 Chapter 2. Internship report

2.1.1 Autonomous University of Madrid

The UAM (Universidad Autónoma de Madrid, in Spanish) is one of the six public

universities in Madrid, in the top three universities of Spain, in the range 201-300 in

the world according to [12] and the 210th according to [13]. Founded in 1968, this

university offers a huge range of studies. This university has two campus: the Faculty

of Medicine, near La Paz Hospital, and the Cantoblanco Campus 15 km to the north

of Madrid. It has eight faculties and several affiliated centers. The actual rector

is Rafael Garesse Alarcón. This university has numerous agreements with differ-

ent institutions, highlighting the Campus de Excelencia Internacional UAM+CSIC

where the UAM collaborates with the CSIC (Spanish National Research Council,

Consejo Superior de Investihación Científica in Spanish, Spanish National Research

Council). The CSIC is the largest public institution in Spain dedicated to research

and one of the most renowned of the European Research Area (ERA), top 5 by

number of action in Eurpoe and the 7th public research globally [14].

2.1.2 Video Processing and Undestanding lab

The Video Processing and Understanding Lab (VPU) is a research group focused on

image processing, video sequence analysis and content adaptation. It was originally

created in Universidad Politécnica de Madrid, formed in 1981, and it was later

extended to the EPS (Escuela Politécnica Superior in Spanish) in UAM. The main

fields of this group are the video-surveillance systems and video content repositories,

mainly oriented to real-time processing.
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2.1.3 Project development and VPU

For this internship it was required basic knowledge in Python and/or C++, a master

or equivalent study in image processing and computer vision and in machine learn-

ing. This was one of the proposed internships by the UAM in the IPCV program.

The project has been done in the VPU lab as part of its group research, mostly focus

on video processing as commented before. This project continues with an existing

work done based in object detectors and deep learning. Most of the projects done

in this lab are based on object detection and object tracking.

During the internship the project has been developed in the laboratories of VPU

and from home. The laboratory has all the necessary equipment, with a workplace

composed by a physical computer and the access to a virtual machine with more

computational power (GPU) with the purpose of training neural networks. In the

group, there where weekly meetings on Tuesdays where each of the PhD students in

the group presented their work in around 10 minutes to the rest of student and the

teachers in the group, commenting the challenges and solutions they found during

their research. Master students were encouraged to participate showing their process

to the rest of the group every two or three weeks. With these meeting the goal was

not only to receive advices and help, but also to offer ideas to other people for

future works. These meetings were done from home via Teams when the access to

the laboratory was not possible.

Apart from this group meetings, I had a weekly meeting with my tutor to discuss

the direction of the project. In these meetings I presented the current work and

received some feedback, and we discussed the limitations we found in the project

and possible solutions. If needed, we met more than once in a week to comment the

progress and we communicate constantly through email.
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State of the art
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3.1 Introduction

Algorithms for people detection have a great importance in the field of computer

vision. People detection is the first step in complex systems such as people identifi-

cation or action recognition. While there are several people detection algorithms for

traditional cameras, we will focus our study in the ones created for omnidirectional

cameras. Both types of cameras have differences and they offer advantages and dis-

advantages with respect to the other, reason why using algorithms initially created

for traditional cameras will not return good results in omnidirectional cameras if

they are directly applied [15].

3.2 Traditional cameras

The usual way to understand how a camera works it to approximate a camera to the

pin-hole model. This pin-hole approximation is a just simplification which allows

us to understand how the 3D points in space are transformed in 2D points just the

way the human eye works.

The light goes through a common 3D point called projection center. All the light

rays then project on the other side in the so-called image plane, where the scene is

represented in 2D. This 2D projected image is inverted, but equivalent to an upright

version of it, as we can see in Figure 3.1. The projected image conserves the linearity

but as every projective transformation, parallelism and angles are not preserved.

The biggest disadvantage of these traditional cameras is the FoV (Field of View).
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Figure 3.1: Pin-hole camera model where all the rays go through the COP (Center

of Projection). (a) shows the inverted projection and (b) the equivalent upright

version. Extracted from [1].

In humans, this FoV is around 150-160 degrees horizontally and 135 degrees verti-

cally. In traditional cameras, the FoV is a around 40-60 degrees. This huge difference

in the view of the scene justifies the interest for other cameras with a wider FoV

where a greater view of the scene can be obtained. There are different types of

cameras with a wider FoV than the traditional cameras (also known as directional

cameras). If we imagine the area covered by the camera as a sphere (also called view-

sphere), where the centre coincides with the center of projection, we can differentiate

other two main groups apart from the directional cameras (Figure 3.2):

• Panoramic cameras, in which the covered area in the view-sphere is 360 degrees

in one direction.

• Omnidirectional cameras, in which the FoV is the whole sphere.

Real omnidirectional cameras are in general more complex to build and therefore

panoramic ones are preferred in most of the cases. Among the panoramic cameras,

we can find several types with some advantages or disadvantages. Some cameras

consist in a small camera system in which each camera takes charge of a region and
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(a) Directional (b) Panoramic (c) Truly omnidirectional

Figure 3.2: Representation of the view-sphere in cameras. Extracted from [1]

whose FoV overlap with the cameras around it. Merging these views, we can create

a wider view of the scene. Other cameras are made with a camera in a rotating

axis that takes images while rotating, that are later merged in a panoramic image.

The withdraw of this camera type is that given the delay caused by the rotation,

the scene should be static to obtain a good result. Fish-eye cameras make use of

lens that provide a greater FoV than directional cameras. Other type of cameras

consists in adding a catadioptric lens to a traditional camera, focusing the light rays

of a bigger region of the scene in the field of view of the traditional camera, with the

problem of creating a blind spot in the centre of the image (where the catadioptric

lens is centred). These are just some examples and there are more ways to obtain

cameras with a wider FoV using lens or more complex camera systems. It’s common

to call fish-eye cameras and catadioptric cameras as omnidirectional cameras, and

so we’ll do for this work. However, as we will see next, in contraposition to the

improved FoV, all these cameras introduce some distortion that we should consider.

The major problem with omnidirectional cameras is that we are trying to cover

a wide 3D scene and represent it in just a 2D image. This lead to a radial distortion

of the images that modifies the shape of the object according to its location in the
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(a)

(b) (c)

Figure 3.3: (a) covers the whole room. It’s necessary the use of two directional

cameras (b) and (c) for the same room. Extracted from [2].

image, contrary to the perspective image obtained from traditional cameras.

While a traditional camera isn’t capable of cover a full room and it’s usually

necessary the use of a camera network system. Let’s use the example of the security

system used in an office. With a conventional camera network it’s highly probable

that we can’t cover the entire room using one single directional camera. But an

omnidirectional camera brings the possibility of reducing the number of cameras

(Figure 3.3), therefore reducing costs, and the complexity of working with a camera
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(a)

Figure 3.4: The limitations of unwrapping images. In (a) the red line indicates

where the limits of the new perspective image. In (b) we can see that the creation

of new borders cuts the person in two. Other example can be seen in the table,

located in the centre in (a) but spread along the bottom in (b), suffering a high

distortion. Extracted from [1].

network: calibrating several cameras and synchronizing them, checking locations to

avoid blind spots. . . It makes a difference if instead of an office we are for example

covering a mall or a large area where the number of cameras could be very high.

Therefore, there are different methods to deal with the commented distortions.

One of the most used techniques consists in unwrapping the image. This method

consists in transforming the omnidirectional image into a traditional perspective one.

This is done by wrapping the image around a cylinder or a sphere and then sampling
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it and projecting the points of the image to the image plane (Figure 3.4). This

technique aims to convert the image in a way that existing perspective algorithms

could be applied on it.

However, this technique doesn’t return perfect results as it introduces more dis-

tortions in the image that didn’t exist before. We can see an example in Figure 3.4

where the creation of a border cuts a person in half or some objects are spread along

the bottom.

3.3 Object detection algorithms

We will then take a look at the most important detectors based on deep learning

and the basics behind them. We will see the existing methods for people detection

specifically designed for omnidirectional cameras and how this is applied in this

work.

3.3.1 Pre-deep learning methods

Sliding windows algorithms were for several years the state-of-the-art method for

people detection. The basic sliding window method first creates a window of fixed

size that goes through the image, obtaining a vector of characteristics from each

window. These descriptors are later classified into the possible objects we were

detecting. This method was slow and had a high computational cost, so it was fast

substituted with deep learning algorithms.

Other important algorithm widely used is the SVM (Support Vector Machine).

Developed by V. Vapnik [16], it consists in finding the optimal separating hyperplane

(Figure 3.5) between positive and negative samples in the feature space. For this
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Figure 3.5: SVM hyperplane for 2D data. One side of the plane is considered positive

while the other is considered negative. Samples are labeled according to the the side

they lay on Extracted from [1]

the data and the labels are fed into the SVM, which with the use of a kernel are

then transform into a multidimensional space.

3.3.2 Machine learning algorithms

Machine learning is nowadays one of the most powerful tools in computer vision.

Based on the idea of teaching a computer to identify characteristics just like humans

do, the number of possibilities it can offer is very huge and day after day more and

more applications are emerging.

To define what a ANN (Artificial Neural Network) is, we should think in how

the external layers of the brain works. It starts with the most basic unit, a neuron,
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Figure 3.6: Example of neurons interconnected forming layers. In this example there

are two outputs. These outputs are usually modify with an activation function, for

example a Lineal, a ReLu, a Sigmoid... Extracted from [1]

which has an input and output, and that connects with other neurons forming layers.

In machine learning, this neuron is represented with an input, a weight, a bias and

an activation function to modify the output. In an ANN the structure is as follows:

1. An input layer, the first neurons to process the data fed to the network.

2. The hidden layers, that receives the processed data from one layer and outputs

it to another.

3. The output layer, in which the data contains the final result of the process.

In an ANN, all the neurons are connected: the output of a neuron in a layer

affects all the inputs in the next layer, and so on. We call a deep neural network a

neural network with several hidden layers (Figure 3.6).
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Figure 3.7: In this image we can see the effect of the parameters in the convolution.

The size of the filter will affect how much we take into account neighboring pixels.

The stride will affect how we move the filter. Finally, the padding is used to output

a result of the same size as the input. Extracted from [3].

3.3.3 Convolutional Neural Networks

A CNN is just a deep neural network especially effective in image processing, as it’s

capable of deal with two-dimensional data more efficiently. It has less parameters to

work with as not all the layers are fully connected, and in the case of images, it takes

advantage of the relation between nearing pixels thanks to the use of 2D filters. The

fact that it works especially well with two-dimensional data makes CNNs the first

option in computer vision tasks such as object detection, although it’s not limited

to images and it’s also used in other 2D data like audio.

A CNN starts with a multi-channel input image of a given size, usually with three

channels (like an RGB image). This image is first convolved with a series of filters



3.3. Object detection algorithms 19

Figure 3.8: Some of the most important activations functions used in CNNs. The

most used one is the ReLu (Rectified Linear Unit) for being the fastest [4], but there

are other options like the Sigmoid or the Tanh. Note that the identity function is

the same as not modifying the output. Extracted from [5].

that output what are called feature maps. A convolution (Figure 3.10 is a process

that makes an element-wise multiplication between the image and the filter. This

filter has a fixed size, which means that the result of the convolution will always have

a fixed size too, but the values of the filter will change on each iteration. These are

the weights or parameters that the CNN will learn. There are two main parameters

worth to mention in a convolution (Figure 3.7: the padding and the stride. The

first one makes sure that the output size is the same as the original image, while

the second one tells how the filter should move in the image. The next step consists

in adding a real value, called bias. This value helps to have some control over the

final output. The last step in a convolutional layer is the activation function. In

Figure 3.8 we can see some examples of these functions. These functions are non-
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Figure 3.9: Pooling process to reduce the image size according to a kernel size of 2.

On the left, max pooling takes the highest value in a 2x2 region while on the right

avg pooling makes the average among the values in that region. Extracted from [3].

lineal functions which goal is to allow the network to learn as a non-linear system.

Adding to this process, it’s normal to introduce some pooling (Figure 3.9 to reduce

the size of the feature maps between layers. This is done to keep the features of the

image that are more general. Like this, in Figure 3.10 we can see the full structure

of a convolutional layer. The output consists in several features maps (as many

as the number of filters), acting like the descriptor of the image. Usually, a CNN

has several convolutional layers, with each of the layers having a set of independent

filters, and at the end some fully connected layers. This layers are just like an ANN,

layers where all the neurons are connected, and is where the classification is done

using the extracted features from the convolutional part of the CNN. The output

of these dense layers is usually modified with the use of some non-linear functions,

like a Softmax or a Sigmoid function to normalize the output, for example between

0 and 1. We can use Figure 3.11 as example of a full CNN.
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Figure 3.10: The whole process of a convolutional layer. The input image is con-

volved with 2 different filters. The result of these convolutions is modified with a

non-linear activation function after adding the bias. The result is as many features

maps as filters were used. Extracted from [3].

3.3.4 Well-known CNNs

It was in 2012 with the apparition of Alexnet that CNNs in computer vision started

to gain fame for the obtained results. Since then different architectures have ap-

peared, aiming to obtain the best results in object detection. Some of the most

famous CNNs architectures for image processing are:

• Alexnet: The architecture proposed by Alex Krizhevsky (Figure 3.11) in [6]

won the Imagenet Large Scale Visual Recognition Challenge (LSVRC), a chal-

lenge for image classification that reached state of the art results at that time

and made researchers think in the possibilities of deep learning applied to

images.

• VGG-16: Proposed in [17], with a depth of 16 trainable layers, this architec-

ture’s strength resided in its simplicity (Figure 3.12: reducing the size in half
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Figure 3.11: Alexnet architecture. The input image has a size of 224x224x3. The

first convolutional layer contains 48 filters. After that, a max pooling is applied and

the result is forwarded into the next convolutional layer. Alexnet is made up of

eight layers: five convolutional layers and three fully connected layers. All of these

layers are followed by a ReLu activation function except for the last fully connected

layer where a Softmax function is used to output a class probability between 0 and

1. Extracted from [6].

and increasing the depth in different steps in its 16 trainable layers

• Resnet: Increasing the number of layers more than a certain limit doesn’t

always return better results and increases heavily the computational cost.

Resnet (Residual Network), proposed by He at all in [18], tries to solve this

by skipping some layers and feeding the output of some convolutional layers

into deeper ones.

• Inception: The idea of the Inception module is to use more than one filter

size on the same input. As we saw before, in a convolutional layer a single

fixed-size filter is convolved with the input. In Inception, more than one filter

size is applied to the same input and then the results are concatenated and

sent to the next layer. In Figure 3.13 we have an example of the first version
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Figure 3.12: The VGG-16 architecture reduces the size of the input after a set of

convolutions with the use of max pooling, and increases the depth of the filters used

in the convolution. With a softmax function, the final value is restricted to a number

between 0 and 1. Extracted from [3].

of an Inception network, GoogLeNet [19].

3.4 CNN-based detectors

We have seen what a CNN is and some of the most famous ones. The commented

architectures are capable of classifying an image, but in most of the cases we are

interested in the location of that object. This is generally done by surrounding

the detected object by a bounding box, indicating the position of the object in the

scene. To obtain this locations, there are different methods that make use of CNNs.
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Figure 3.13: GoogLeNet has 9 inception modules stacked linearly. It is 22 layers

deep with 5 pooling layers, and uses avg pooling at the end of the last inception

module. Extracted from [3].

We can differentiate two main groups of detectors based on CNNs: those who first

propose the regions and then make the classification in a CNN, and those who make

both region proposal and classification in the same network.

• Region based detectors This group of object detectors divide the process in two

steps. First, the input image is divided in different regions or RoI (Regions

Of Interest) where an object could be located. Each region is separately fed

into a CNN which makes the classification.

– R-CNN: Regions with CNN features was proposed by Ross Girshick et al.

in [20]. First, the RoI are calculated using the selective search method

[21]. The main steps can be observed in Figure 3.14. First, the image is

divided in small regions that are combined into larger ones according to

their similarity. Finally, around 2000 regions are proposed. In a second

step, these regions are fed into a CNN. The CNN outputs a feature vector

to a last layer of SVMs, returning the final score for each class. The

biggest disadvantage of R-CNN is the computational cost. Each region

needs to be sent to the CNN, making the process very slow for real time
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Figure 3.14: First, ROI are proposed externally to the CNN. Later, the CNN extract

the vector of characteristics of each regions and a last layer of SVMs classifies them.

applications.

– Fast R-CNN: The Fast-CNN architecture [22], from the same authors of

R-CNN, comes to solve the speed problems of R-CNN. The main differ-

ence can be found in Figure 3.15. This time, instead of proposing the

regions externally, the image is directly fed into the CNN to generate the

convolutional feature maps. And here it’s where the regions are proposed

and, by using a RoI pooling layer, they are reshaped and fed to the fully

connected layer, which classifies them. Additionally, the SVM layer is

changed with a softmax layer to output the class probabilities.

– Faster R-CNN: The Faster-CNN architecture was proposed by Shaoqing

Ren et al. in [23] to improve the speed of the Fast R-CNN. The idea

was the same but instead of using the selective search algorithm as Fast

R-CNN to obtain the region proposals (making the process slower), a new

network is added to learn to extract these regions.

• One-step detectors If the previous group consisted in extract regions and then

classify them, this group aims to do both at the same time. These detectors,
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Figure 3.15: R-CNN has an external step where the regions are proposed, and then

the CNN process each of these regions. Fast R-CNN changes this by including the

region proposal inside the CNN, and extracting the regions from the feature maps

instead of from the input image. Finally, Faster R-CNN proposes to use a second

network in parallel to obtain the proposals instead of using selective search to find

them. Extracted from [7].

also called one-shot detectors, prioritize the speed and real time applications.

– SSD: Single Shot MultiBox Detector, proposed by C. Szegedy et al. in

[24], consists in using an CNN (originally VGG-16) to extract the image

features, but substituting the fully connected layers with extra convolu-

tional layers. Figure 3.16 shows the extra layers. As the size decreases

with the introduction of more layers, making the small objects in the

image hard to detect, SSD uses deep layers of the network for object

detection and classification.

– YOLO: The YOLO (You Only Look Once) architecture divides the input

image in a grid of SxS regions, and predicts N bounding boxes with a

confidence score. This confidence reflects the accuracy of the bounding



3.4. CNN-based detectors 27

Figure 3.16: SSD uses a CNN in the first steps and then adds extra convolutional

layers. To avoid losing the small objects in lower resolutions, SSD uses the output

of different layers to predict bounding boxes and classify them

box and whether the bounding box contains an object (of any class) or

not. In parallel, YOLO also predicts the classification score for each

bounding box for every class in training. Combining both scores you

can calculate the probability of each class being present in the predicted

bounding box (figure 3.17).

3.4.1 Object detection methods for omnidirectional cam-

eras

We have reviewed some of the most important state of the art algorithms for object

detection. However, all this algorithms work under the assumption that the ob-

ject’s appearance remains very close to the original and they are spatially invariant.

Although there are some works that tries to use this principle [25] [26], in omnidi-

rectional cameras this is not true. Omnidirectional cameras, as commented before,

introduce great distortions in the objects, causing that an object in the center of

the image looks completely different from an objects in the border of the image.

Other works apply a sphere-to-plane projection [27] in the input images to feed

it to a CNN. However, there are different problems that deep learning applied to
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Figure 3.17: YOLO proposes a class probability for each proposed region. However,

most of this confidences are very low and can be easily removed with an appropriate

threshold. Extracted from [8]

omnidirectional cameras have to face.

One of the main problems of using CNNs in omnidirectional cameras is the lack

of data. Data is hard to obtain and annotate, and most of the existing databases are

for conventional cameras. Additionally, the data is usually annotated in perspective-

like formats, like using bounding boxes that do not take into account the distortion

of the objects. Some works like [28] propose the use of adapted bounding boxes to

spherical images and extract spherical regions proposals as a previous step to an

R-CNN.

Other main problems of CNNs is that the convolutional filters learn invariant
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features assuming they won’t change in space. This assumption works in conven-

tional cameras but it’s not applicable to omnidirectional cameras. In that line,

other works like [29] and [30] propose a different approach: adapting the convolu-

tional filters to the spherical image representation. In [31] the authors create a new

convolutional kernel for CNNs using linear combinations of differential operators

weighted by learnable parameters to substitute the filters in convolutional layers.

3.5 Grid of Spatial-Aware Classifiers

In [1] the idea was to use a grid of SVM classifiers to detect objects in omnidirectional

cameras robustly and fast enough to work in real time applications, improving the

previous methods from the state of the art based on sliding windows.

3.5.1 Architecture

The method starts obtaining a single descriptor for each image. This feature vector

is fed to a grid of classifiers where each classifier is associated to a location in the

image. This classifiers are SVMs that will learn the appearance of the objects from

its attention area or fovea. The last step consists in a fusion of the classifiers outputs

to obtain the final position of the object in the image.

3.5.2 Training

The used algorithm for feature extraction is HOG [32]. This is applied to the whole

image to obtain one single descriptor that, together with the ground-truth of active

classifiers, will be the information used for the SVMs of the grid to learn. One of

the main differences in this architecture with respect to other algorithms is that the
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ground-truth of positions is point-based. It means that the position of an object

(in this case a person) is not given by the traditional bounding box, but by a point

located in the head, shoulder or center of the person. This positions will activate

just some classifiers of the grid: those in which the object’s point location lays inside

the fovea, and the rest will be marks as no active. This will create a ground-truth

of active classifiers where just the SVMs of the grid where there is a person will be

marked as active.

3.5.3 Testing

Once the SVMs of the grid are trained, an input image will generate a confidence

score for each classifier. Each classifier will have an estimated confidence about how

sure that classifier is active or, in other words, how probable is for a person to be

in the region belonging to that classifier. It’s assumed that the classifiers with the

highest confidences are the ones that ideally are closer to the ground-truth position

of the person.

First, a threshold (hyperPlaneThreshold) is set to decide if a classifier is active.

The values above the threshold are consider active classifiers while the rest is marked

as not active. This step by itself is not enough to remove false detections, so a

second filtering step is applied as shown in Figure 3.18. A group confidence is

calculated in neighbourhoods of active classifiers in the grid. These neighbourhoods

can contain active and no active classifiers, and the same classifier can belong to

different neighbourhoods. The group confidence is then calculated summing the

confidences of the classifiers in it, and then filtered out with a minimum group

threshold (MinGroupThreshold). Finally, a process of NMS is applied to keep the

group of classifiers (the neighbourhood) with the highest group confidence. The

classifiers in this neighbourhood will be the ones used to calculate the location of
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Figure 3.18: A group score is calculated adding the scores inside a neighbourhood

and then a threshold is applied to remove activations with a low score. Then, a

NMS (Non-Maximum Suppression) is applied to each neighbourhood’s score to get

rid of multiple detections for the same person. The final location is calculated by

the average position (interpolation) of the classifier’s scores in the neighborhood.

Extracted from [1].

the person by an average sum of its confidences. Assuming that the classifiers with

the highest confidences are the ones that ideally are closer to the ground-truth

position of the person, the confidence of each classifier could be understood as a

weight and therefore the position can be calculated as the average position between

them:

x, y =
Nn∑

i=0

αixi,
Nn∑

i=0

αiyi (3.1)

Where Nn is the total number of active classifiers in the neighborhood, αi is the

confidence value of classifier i and xi, yi are the coordinates of that classifier.
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3.5.4 Adaptation to deep learning

In [7] the possible use of features vectors extracted from the last layers of different

CNNs is studied. The goal is to analyze if the extracted characteristics in the last

layers of some of the most famous CNNs could be used as an input to the grid of

SVM classifiers, instead of using HOG. For the different CNNs used refer to [7].

The main disadvantage in [1] is that the training can only be done for one camera.

It means that when deploying a camera system, each camera needs to be trained

independently.

We will see more details about it in section 4 of this thesis. This work tries to

push that idea of introducing deep learning a little further, substituting the whole

training and detection process with a CNN, teaching a neural network to activate

classifiers according to the characteristics extracted by the network itself from the

images.
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Proposed System

4.1 Introduction

The developed system focuses on the detection of objects on static, omnidirectional

cameras. We are going one step further in the work done in [1] and [7] trying to

implement an architecture based on CNNs that can work end-to-end, extracting the

features from the image and classifying in the same network.

4.2 System overview

The main idea is to train a neural network that will learn to predict the position of

an object (in our case a person) based on a grid of points placed over the image. The

proposed system applies for any CNN, although in this work we have used Alexnet

and Resnet architectures.

Figure 4.1 shows the main steps of the process and the differences with the

system proposed in [1].

33
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Figure 4.1: Workflow of the proposed system. In the training module the database is

first adapted to the CNN: the images are resized and the ground-truth of classifiers

is calculated from the ground-truth locations. This part is inherited from [1]. Then,

the images are fed to the feature extraction module, and the vector of features is sent

to the fully connected layers to obtain a vector of N classifiers. In the detection step,

the sequences are fed to the trained network (feature extraction and fully connected

modules), and the obtained vector of N classifiers is sent to a sigmoid function to

obtain a prediction score in between 0 and 1. These scores are finally used in the

fusion of classifiers module, inherited from [1], where the final position is obtained

as described in Section 3.5. Image for the feature extraction module adapted from

[9].

First the ground-truth of activations is calculated from the ground-truth of posi-

tions using the module from [1]. Here the shape and number of classifiers in the grid

(Figure 4.2) are eligible parameters and the effect in the performance was studied in

the commented work. A grid with just a few classifiers will not learn to locate the

position of a person with much accuracy. On the other side using a large number

of classifiers will locate a person more accurately but will make the classifiers very
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(a) Rectangular (b) Hexagonal (c) Circular

Figure 4.2: The shape of the grid and the number of SVMs can be chosen. These

are important parameters to achieve good results. Extracted from [1].

specific, learning features from a very small area and not general characteristics. It’s

then important to find a balance between the accuracy and the number of classifiers.

Later, the CNN extracts the characteristics of the input image and outputs a

vector with the predictions for the grid of classifiers. These predictions consist in

a vector of confidence scores indicating the probability of a person being in that

region on the image, and are calculated applying a sigmoid to the output of the

last fully connected layer of the CNN. The output is a vector of size N , being N

the number of classifiers in the grid. A single image will always activate several

classifiers, with an independent probability for each of them. As this is not a single

classification problem with just one class as a solution but a multilabel problem, we

need a function which outputs a probability for each classifier of the grid. We use

the non-linear function sigmoid. This function also makes sure that the probability

is a number between 0 and 1.

Finally, the same module used to obtain the final position in [1] is used here to

calculate the position of the person from the predicted classifiers.
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4.3 Training

For this task, images of omnidirectional cameras from different scenarios (different

cameras) are used to avoid over-fitting to one camera (an analysis of the data is done

in Section 5.2). We make use of fine-tuning to train the network with images from

PIROPO dataset. The network uses the already pre-trained weights (imageNet for

both) and update the parameters (weights) of the network to train it. There are two

reasons to do this: first, using fine-tuning with a different set of images generalize

better the network, specially when the amount of training data is limited. Second,

training a network from scratch has a high computational cost and using an already

pre-trained network can reduce it considerably.

The number of classifiers activated by a person in one image is low if we compare

it the total number of classifiers. This inevitably causes a problem of class imbalance,

in which we have less positive samples than negative, biasing the network in favour

of negative samples. To avoid the network to learn to predict mostly 0s (non-active

classifiers), it is necessary to weight the positive samples in a proportion inversely

proportional to the number of negative samples in the database. In this case, we

opted for a simple weighting in which the weight for a positive sample is calculated

according to the ratio of positive and negative samples of each classifier (the number

of times the classifier of the grid has been active and not active in each image of the

database):

W
pos
i =

Nno−active
i

Nactive
i

(4.1)

Where W
pos
i is the weight applied to positive samples of classifier i and Nactive

i

and Nno−active
i are total number of times that classifier i is active and not active,

respectively.
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Finally, data augmentation techniques can be applied as long as they respect

the spatial relation between the grid of classifiers and the image. Some examples of

possible transformations could be modifying the intensity levels or converting the

images to grayscale. This will be discussed deeper in Chapter 5.

4.4 Testing

(a) (b)

Figure 4.3: Active classifiers over (a) one person and (b) three people. Extracted

from [1].

Once the training of the CNN is complete, the last step is to calculate the

predicted position of a person in the image from the predicted scores of the grid of

classifiers. The scheme is identical to the one presented in Section 3.5 except for

the origin of the obtained scores: in [1] the confidences were the output of the SVM

but in this work they are the result of a sigmoid applied at the end of the CNN.

Therefore, to decide whether a classifier is active or not, a different threshold called
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MinThreshold is set. These predictions are expected to consist in a small group of

active classifiers in a region around the person as shown in Figure 4.3.
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5.1 Introduction

In this chapter we will discuss the experiments and results we had during the develop-

ment of the project. We will start explaining the database used and the parameters

selection. Then we will describe the different experiments done with CNNs and the

proposed improvements.

5.2 Datasets

The used dataset has been the public PIROPO (People inIndoor Rooms with Per-

spective and Omnidirectional cameras) dataset [2]. This dataset contains sequences

from both omnidirectional cameras and traditional cameras of indoors scenarios.

Only the omnidirectional images has been used for this work. There are four dif-

ferent cameras from different scenarios that can be seen in Figure 5.1: The dataset

consist in two different rooms. Room A is an open area covered by 8 cameras:

three omnidirectional (omni_1A, omni_2A and omni_3A) and five conventional

ones. Room B is a smaller area but with more objects in the scene: tables, chairs

and computers. There are two cameras in this room: one omnidirectional camera

(omni_1B) and one conventional camera. The field of view of the omnidirectional

cameras is 187o and the size of these images is 800x600 with a frame rate of around

10 fps. All the cameras are synchronized and recording at the same time, sharing

the content of the scenes among them.

This database was created as part of the work [1]. In this work the ground-truth

for the sequences was created point-based, i.e. the position of a person is given by a

point located in the head. In that work the idea was to generate a database with a

reduced number of people to check if the training could generalize enough to be used
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Figure 5.1: Views for some of the cameras contained in the Dataset. In order,

omni_1A, omni_1B, omni_2A and omni_3A.

in an extended group of people. With this idea four test sequences were created,

simulating different scenarios and possible situations. The information about the

sequences for training and testing can be found in Table 5.1.

5.2.1 Adaptation to current system

As the used networks need square images as input, it’s necessary to adapt the

image shapes before feeding the CNN. Given the spatial relationship of the grid of
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Sequence Description

training 1 person walking around the room

test1 1 person present in the training walking around the room

test2 Up to three people walking simultaneously

test3 1 person not present in the training walking around the room

test4 1 person walking around the room and standing still

Table 5.1: Information for PIROPO sequences. The sequences without ground-truth

were not used and are not included in the table.

classifiers with the image, cropping the image requires to recalculate the ground-

truth of classifiers from the ground-truth positions. This has been done cropping

the image horizontally to give the images a size of 600x600, respecting the circle

of vision of the camera, and adapting the ground-truth of classifiers accordingly as

explained in Section 3.5.

5.2.2 Other datasets

Part of this work consisted in studying the available dataset for omnidirectional

cameras, and focusing on people detection. Table 5.2 show characteristics of these

datasets. Although they haven’t been used in this project, it is expected to be useful

for future works.

5.3 Metrics

The performance of the method has been measured in two different domains: classi-

fier level and detection level. In both domains the performance is measured compar-
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Ground-truth N of images Format N of people in scene Actions Camera position Content type N of cameras

PIROPO Yes, point-based +20.000 images + .csv One or various Walking Ceiling Real 3

Theodore dataset [33] 100.000 Tfrecord Various Sitting and walking Ceiling, moving Artificial ?3

Car and Human dataset [34] Yes, bounding boxes 30 images + .mat Various Walking Ceiling Real 41

Fisheye Dataset [35] - No2 443 images Various Sitting and walking Wall Real 1

LabRoomB

Fisheye Dataset [35] - No2 82 images One Walking Ceiling Artificial 1

LivingroomB

Fisheye Dataset [35] - No2 120 images One Walking Ceiling Artificial 1

HallwayC

Bomni [36] Yes, bounding boxes 17+17 videos, Videos + .dat One and various Sitting and walking 1 view wall + Real 2

Scene1 aprox 1:40 min 1 view ceiling

Bomni [36] Yes, bounding boxes 4+4 videos, Videos + .dat One and various Sitting and walking 1 view wall + Real 2

Scene2 aprox 1:40 min 1 view ceiling

Table 5.2: Information for different datasets. 1In the same dataset, 6-8 images from

four different scenarios. 2Not available yet. 3 In the same dataset, each approxi-

mately 20 images the scenario changes.

ing the predicted data with the ground-truth. In the classifier level we compare the

predicted classifiers with the ground-truth of classifiers. For the detection level, we

calculate the metrics using the predicted position and the ground-truth positions. In

both cases, the metric used are the Precision 5.1, Recall 5.2 and F1-Score 5.3. The

precision indicates the fraction of relevant instances among the retrieved instances,

while the recall is the fraction of the total amount of relevant instances that were

actually retrieved. The F1-Score is a useful metric which combines both measures

and helps to compare the classification results faster.

Precision =
TP

TP + FP
(5.1)

Recall =
TP

TP + FN
(5.2)

F1 − Score = 2 ·

Precision · Recall

Precision + Recall
(5.3)

Where TP is the number of True Positives, TN of True Negatives, FP of False

Positives and FN of False Negatives.
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5.3.1 Detection metrics

In the detection step, the metrics are obtained from the ground-truth of positions

and the predicted position. To decide whether a point is a TP or not, a distance d

between these two points is used as show in Figure 5.2. If the predicted point PCNN

lays inside the circumference of radius d centered in the ground-truth point PGT ,

the sample is considered a TP. Else, it is considered a FP. In case that more than

one PCNN lay in the circumference, a greedy algorithm chooses the closest one and

marks it as TP and the other as FP.

Figure 5.2: Possible cases for a predicted position and the ground-truth position.

Extracted from [1].
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5.4 Experiments

5.4.1 Parameter selection

In this section we are going to explain the fixed parameters used during the exper-

iments. In this work we have tested two main networks: Alexnet [6] and Resnet18

and Resnet50 [18] as CNN in the CNN module in Figure 4.1. We have used Python

with the Pytorch [37] library for the classifier prediction module. To obtain the

classifier ground-truth and final positions the C++ code provided in [1] has been

used.

After some experiments to see the best combination of parameters, we ended up

with using this configuration:

• For the grid parameters, we use an hexagonal grid of 25x33 (i.e. 825 classifiers).

• Adam (derived from Adaptive Moment Estimation) [38] as an optimization

algorithm given its fast convergence when reducing the loss, and a weighted

BCE (Binary Cross Entropy) for the loss function for being the most suitable

one for binary classification. Other future plans include the use of Focal Loss

to deal with the imbalance data.

• The minThreshold commented in Section 4.2 is set to 0.5, for being the middle

point of possible values for the classifiers. The minGroupThershold is set to 1.

• The radius d is set to 15 pixels. This is a strict value which assures that the

positive detections are as close as possible to the ground-truth.
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5.4.2 Comparison with existing works and analysis of pro-

posed system

For the first experiments we compared the existing method proposed in [1] with

Alexnet and Resnet18. The experiments consisted in training the grid of SVMs and

the CNNs with the training sequences of the four cameras: omni_1A, omni_2A,

omni_3A and omni_1B to prove that the network was able to generalize better

in the CNNs than in the proposed system in [1], where the training was originally

individual for each camera. The SVMs was trained with the parameter’s values

indicated in [1], which are minGroupThreshold = 1.9 and hyperplaneThreshold =

1. For the CNN architectures we’ve trained for 200 epochs. The results have been

evaluated with the test sequences of all the cameras.

As shown in Table 5.3, the results with the CNNs show a better generalization

for all the cameras, proving that a CNN can offer better results. Trying other

architectures from the state of the art such as YOLO are part of the future work.

Between the two CNNs, experiments with Resnet18 are in average better than

Alexnet. However, looking at the results for each test sequence independently (Ta-

ble 5.4) we can see that the precision and recall in different test and cameras suffer

from high variation. While for the test1 sequence the results are above 94% for

precision, recall and F1-score in three of the cameras and above 88% for omni_1A,

other test sequences show low performance results. This is coherent with the fact

that test1 contains people from the training set.

The first limitation found is that the recall for test2 in all the cameras is very low,

which means that we are not detecting people most of the time. The reason behind

this is the number of people that appear on the scene. As commented in Section 5.2,

while in other test sequences the number of people who appear simultaneously is
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HOG+SVM [1] Alexnet Resnet18

Precision 0.2234 0.7814 0.8726

omni_1A Recall 0.6188 0.5951 0.6403

F1-Score 0.3069 0.6578 0.7160

Precision 0.2847 0.6985 0.8117

omni_1B Recall 0.5986 0.6238 0.6702

F1-Score 0.3796 0.6464 0.7016

Precision 0.1987 0.6283 0.7853

omni_2A Recall 0.6429 0.6411 0.7044

F1-Score 0.2920 0.6063 0.7004

Precision 0.1886 0.7201 0.8904

omni_3A Recall 0.5727 0.5364 0.4557

F1-Score 0.2634 0.6049 0.5335

Table 5.3: Comparison with SVM from [1], Alexnet and Resnet. The table show the

aggregate results of the four test sequences (three for omni_1B) for each camera.

In average, the results from Resnet18 show a better performance than Alexnet.

always one, in test2 this number is three. The results are coherent with the fact

that in all the training sequences the maximum number of people at the same time

in the room is just one person so the network is biased to towards single detections.

Another limitation found is in camera omni_3A. In this case the recall for

both test3 and test4 is very low. The problem here is that we are not detecting

the person in the sequence in most of the frames. Our first hypothesis was that

this could be caused for a low number of images with people (i.e. a low number

of images with positive samples) in the training sequence for omni_3A. This was

making the network learn that images with that specific background don’t usually
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Resnet18 omni_1A omni_1B omni_2A omni_3A

Precision 0.8821 0.9572 0.9408 0.9450

test1 Recall 0.8831 0.9702 0.9408 0.9497

F1-Score 0.8826 0.9637 0.9408 0.9474

Precision 0.8008 0.6241 0.8093 0.8961

test2 Recall 0.2600 0.1865 0.2507 0.5568

F1-Score 0.3926 0.2872 0.3828 0.6868

Precision 0.8962 0.8528 0.6999 0.8235

test3 Recall 0.7532 0.8538 0.8972 0.0415

F1-Score 0.8185 0.8538 0.7863 0.0791

Precision 0.9115 0.6912 0.8971

test4 Recall 0.6671 0.7291 0.2748

F1-Score 0.7704 0.7096 0.4207

Table 5.4: Resnet18 metrics for the test sequences of each camera. In black, those

values specially low in comparison to others. The test2 sequences in all cameras and

the cameras omni_3A have specially low recall.

contain people. We can see that the number of images with an actual person is less

than half the number of training images for that camera in Table 5.5.

Finally, in test2 and test3 of camera omni_2A the precision reduction comes

from some punctual false detections in the lower part of the scene (Figure 5.3,

probably caused by the illumination of the scene. Aditionally, in sequences test3

and test4 of camera omni_1A the recall is also reduced because there are some

people in the borders of the scene that are not being detected.

With these three challenges in mind, we thought in different options to solve

them.
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Number of images Number of empty images

omni_1A 10969 3032

omni_1B 4584 398

omni_2A 10401 3148

omni_3A 10975 5997

Table 5.5: Number of images in each training sequence and number of empty images.

An empty image is defined as those images where there are no people and the image

represents the background.

5.4.3 Use of data augmentation

For the first and third limitation encountered we proposed two different techniques

of data augmentations:

• As a solution to the first problem with the sequences of more than one person,

our hypothesis was that adding more images with multiple people would make

the network to learn that more than one person can be in the scene at the

same time. The idea was to generate artificial images adding people from one

image to another. To do this, first a pair of random images was selected from

the training database. Using the Mixture Gaussian model for background

subtraction (Figure 5.4) the person was cut from one image and pasted into

the other. Through this process, we created an extra 33% of random synthetic

images from each training sequence, that was later used (together with the

original database) to train the network.

• To solve the third limitation related with the color and intensity changes in the

scene, a different data augmentation was proposed. As commented in Chapter

4, data augmentation is always possible as long as the shape of the image is
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(a) (b)

Figure 5.3: (a) shows in person not being detected in camera omni_1A, sequence

test3. (b) shows an example of the false detection that appears in camera omni_2A,

sequence test3.

respected. In this case, both changes were applied to the original database

with a probability of 33% :

– Convert the image to grayscale.

– Randomly change the brightness, contrast and saturation of the image.

5.4.4 Reducing the number of negative samples

In the second case the our hypothesis was that the problem didn’t come from appear-

ance, but for the number unbalance in the number of positive and negative samples

in the camera omni_3A. The proposed solution was to remove all the frames that

were empty, i.e. all the frames were none of the classifiers are active, as those frames

are almost identical and consist in the background of the scene as can be seen in

Table 5.5.
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(a) (b) (c)

(d) (e) (f)

Figure 5.4: (a) and (b) show the original images. Using a background subtraction

algorithm, a mask of the person is created (c). The mask is used to obtain the person

(d) and the inverse of the mask is used on the other image (e) to avoid overflow when

adding them. Finally the person is added to generate a synthetic image (f).

5.4.5 Results for the proposed solutions

After analysing the previous problems and implementing the proposed solutions,

three different experiments have been done. The aggregate results for each camera

can be observed in Table 5.6.
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omni_1A

No data

augmentation

Data augmentation:

Grayscale and

intensity changes

Data augmentation:

Empty frames

removed

Data augmentation:

Synthetic

people added

Precision 0.9313 0.9331 0.6531 0.9195

test1 Recall 0.9359 0.9301 0.7620 0.9254

F1-Score 0.9336 0.9316 0.7034 0.9224

Precision 0.7826 0.8199 0.6921 0.8092

test2 Recall 0.3135 0.2893 0.3200 0.7456

F1-Score 0.4477 0.4277 0.4376 0.7761

Precision 0.8183 0.6069* 0.6792 0.6113

test3 Recall 0.6364 0.4855 0.3674 0.8112

F1-Score 0.7160 0.5395* 0.4769 0.6972

Precision 0.8333 0.5746* 0.7973 0.5570

test4 Recall 0.5570 0.2752 0.2890 0.8497

F1-Score 0.6677 0.3723* 0.4242 0.6729

Improvement of more than 0.1 Loss of more than 0.1

Table 5.6: Results for Resnet18. The results are the average of the test sequences for

each camera. The experiment with the higher performance is the one using synthetic

images (fourth column). The values marked with * had an indeterminate value for

one of the sequences. In this case the value is considered 0.

Results for the data augmentation solution

The experiment of data augmentation where images were converted to grayscale

and intensity values changed randomly didn’t return the expected results. With

this solution we were trying to make the system robust to illumination changes,

forcing the network to learn more general characteristics from human shapes and to

trust less in the colour characteristics of the appearance. As commented before, this

solution was motivated by test sequences where people not present in the training

sequences appear on the scene with different clothes colour. More details can be

seen in the extended Table 5.8
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(a) (b)

Figure 5.5: False detections in (a) camera omni_1A and (b) camera omni_2A.

These false activations in the grid are detected as a person, therefore reducing the

precision. The effect gets worst after training with the artificial people dataset.

The experiment with the use of synthetic images to include some samples during

the training step with multiple people can be seen in the fourth column of Table 5.8.

The increase in the recall for test2 in all the cameras is noticeable. Additionally,

other sequences have improved the recall where other techniques have failed, like

sequences test3 and test4 from the camera omni_3A. However, the precision in

some test sequences has decreased. The cause of this diminution in the precision

comes from the increase in the number of false positives (FP), as shown in Figure 5.5.

The false detection suffered in camera omni_1A at the left and in omni_2A at the

bottom becomes almost constant.

Results for the negative samples reduction solution

For the experiment where all the empty frames are removed, once more the per-

formance of the network was lower than the base version were no modifications in
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(a) (b)

Figure 5.6: False detections in (a) camera omni_2A and (b) camera omni_3A. The

use of synthetic images in Resnet50 increases the number of false positives more than

in Resnet18.

the dataset were done. The extended results can be seen in the third column of

Table 5.8 This was not the expected results as the idea was to remove those frames

that were only negative samples. The reason behind these results is not clear and

more research needs to be done in this aspect.

5.4.6 Experiments with Resnet50

After seeing the previous results, we decided to try a deeper version of Resnet,

Resnet50. Two experiments have been done: Resnet50 and Resnet50 with the data

augmentation using synthetic images. The results can be seen in Table 5.7. These

results show that using a deeper version of Resnet doesn’t improve the performance,

and although the use of data augmentation seems to work better with respect to

the base version Resnet50, its use highly increases the false positives as can be seen

in Figure 5.6. This happens in all cameras except omni_1B. The problem could
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be in the way the classifiers react to different regions of the scene, and its study is

part of the future work.

Resnet18 Resnet50 Resnet50 with

synthetic images

Precision 0.8726 0.7679 0.6548

omni_1A Recall 0.6403 0.7185 0.8480

F1-Score 0.7160 0.7070 0.7115

Precision 0.8117 0.7849 0.8806

omni_1B Recall 0.6702 0.6850 0.8787

F1-Score 0.7016 0.7181 0.8797

Precision 0.7853 0.6897 0.5977

omni_2A Recall 0.7044 0.6655 0.8402

F1-Score 0.7004 0.6382 0.6578

Precision 0.8904 0.8266 0.5459

omni_3A Recall 0.4557 0.4994 0.8593

F1-Score 0.5335 0.5931 0.5936

Table 5.7: The table show the aggregate results for each camera for the detections

using Resnet18, Resnet50 and Resnet50 with data augmentation. The results show

that using Resnet50 doesn’t improve the performance of the network. Surprisingly,

the use of data augmentation show some better results with respect to the base

Resnet50, but it’s use increases the apparition of false positives.
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omni_1A

No data

augmentation

Data augmentation:

Grayscale and

intensity changes

Data augmentation:

Empty frames

removed

Data augmentation:

Artificial

people added

Precision 0.8821 0.8873 0.6383 0.8760

test1 Recall 0.8831 0.8808 0.8226 0.8780

F1-Score 0.8826 0.8840 0.7188 0.8770

Precision 0.8008 0.8304 0.6724 0.8453

test2 Recall 0.2600 0.2739 0.2510 0.6892

F1-Score 0.3926 0.4120 0.3655 0.7593

Precision 0.8962 0.8179 0.6871 0.4455

test3 Recall 0.7532 0.1752 0.0716 0.8837

F1-Score 0.8185 0.8538 0.7863 0.0791

Precision 0.9115 0.8500 0.8298 0.4413

test4 Recall 0.6671 0.0661 0.1010 0.8523

F1-Score 0.7704 0.1226 0.1801 0.5815

omni_1B

Precision 0.9572 0.9807 0.6962 0.9543

test1 Recall 0.9702 0.9648 0.8509 0.9621

F1-Score 0.9637 0.9727 0.7659 0.9582

Precision 0.6241 0.7719 0.7213 0.6440

test2 Recall 0.1865 0.0989 0.1978 0.7236

F1-Score 0.2872 0.1753 0.3104 0.6815

Precision 0.8538 0.7826 0.5119 0.7907

test3 Recall 0.8538 0.7774 0.6412 0.7907

F1-Score 0.8538 0.7800 0.5693 0.7907

omni_2A

Precision 0.9408 0.9258 0.8184 0.9273

test1 Recall 0.9408 0.9278 0.8716 0.9293

F1-Score 0.9408 0.9268 0.8442 0.9283

Precision 0.8093 0.7701 0.6746 0.8435

test2 Recall 0.2507 0.2382 0.2756 0.7563

F1-Score 0.3828 0.3639 0.3913 0.7975

Precision 0.6999 0.8271 0.8034 0.3978

test3 Recall 0.8972 0.8250 0.7421 0.8242

F1-Score 0.7863 0.8261 0.7716 0.5366

Precision 0.6912 0.8739 0.7159 0.3557

test4 Recall 0.7291 0.7595 0.5677 0.7915

F1-Score 0.7096 0.8127 0.6333 0.4908

omni_3A

Precision 0.9450 0.9387 0.4595 0.9203

test1 Recall 0.9497 0.9472 0.8615 0.9324

F1-Score 0.9474 0.9430 0.5994 0.9263

Precision 0.8961 0.9074 0.7001 0.9039

test2 Recall 0.5568 0.5464 0.5557 0.8130

F1-Score 0.6868 0.6821 0.6196 0.8560

Precision 0.8235 0 0.7143 0.8113

test3 Recall 0.0415 0.0000 0.0148 0.7463

F1-Score 0.0791 0 0.0291 0.7774

Precision 0.8971 0 0.8462 0.8739

test4 Recall 0.2748 0.0000 0.1982 0.9054

F1-Score 0.4207 0 0.3212 0.8894

Improvement of more than 0.1 Loss of more than 0.1

Table 5.8: Results for all the test sequences of every camera. The best performance

is obtained with the synthetic images. Other experiments have shown a lower per-

formance than the basic experiment without any kind of data augmentation.
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5.5 Conclusions

In this thesis we developed a object detector based on CNNs that can be use end-to-

end. We have improved the obtained results in [1] and solving some of its limitations,

like the use of different cameras to generalize better during the feature extraction.

This work is presented as robust and system based on the idea of a simple detec-

tor: extracting characteristic directly from omnidirectional images to detect objects

without any previous pre-processing.

In a first experiment we tested different networks, Alexnet and Resnet18 and

compared them with [1]. The results show a better performance when using CNN

characteristics in average when trained with different cameras, but showed some

limitations of the system that we tried to solve proposing different ideas. Some of

the limitations found were the lack of detections in scenarios with multiple people,

limitations we partially solved using data augmentation techniques. For this problem

the proposed idea was to generate synthetic images from selecting two images from

the training database, and adding people from one frames into the other artificially.

As part of the future work, more synthetic images can be created using images with

more people or using more images to create one. Other limitations were related

to the number of negative training samples and how it affected the performance of
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specific scenarios where the number of frames with no positive samples is very large.

We proposed the eliminations of those frames as possible solution but the results

showed that the performance decreased and more research needs to be done in this.

We tested other data augmentations techniques like intensity changes aiming to

reduce false detections probably caused by illumination ant to improve the number

of detections in different regions of the image, and we discovered that the effect in

the training process doesn’t improve the performance as expected.

5.6 Future work

In this work we have tested two well known networks: Alexnet and Resnet. However,

the use of other networks with better performance in object detection tasks can

highly improve the results and open new possibilities of study. The comparison with

other State of the Art detectors trained with omnidirectional images could help in

giving a different perspective to the results. Additionally, the used CNNs required

an images size of 224x224. Using architectures that allows bigger resolutions could

help in the detection of objects in the external parts of the image.

In this thesis we have use simple techniques of data augmentation but as we

have seen the overall results have improved. Given the lack of annotated data for

omnidirectional cameras, the use of other existing datasets as commented in 5.2 or

thinking in different ways to augment the existing data as commented in 5.5 could

be also an important part of the future work. And other important possibility is

the use of the focal loss to deal with data imbalance efficiently.

During the development we have found unexpected results in some experiments

that are still not clear. CNNs are a powerful tool but sometimes finding the causes

of errors could be a non-trivial task given the large amount of parameters and
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layers they have. We have seen that some data augmentation techniques can help,

like the synthetic images commented before. But sometimes other techniques like

intensity changes results in a lower performance of the system. Other ideas of data

augmentation could be to rotate the images (taking into account the spatial-relation

commented in 5.2).
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